quarta-feira, 25 de abril de 2012

Mitocôndrias oxidam mais um pouco o D.I.

_
Rascunho meu para ser adaptado e ainda muito modificado para ser acrescentado no "já quase livro" sobre argumentos contra o D.I. (Refutações ao Design Inteligente) sobre o excelente texto

E a Biologia Molecular manda mais um cruzado de direita nos criacionistas...

do Blog RNAM de Rafael Soares e Gabriel Cunha - o qual modifico um pouco, por sua vez sobre o artigo "More 'Evidence' of Intelligent Design Shot Down by Science", escrito por Brandon Klein e publicado na Wired Science.



Em artigo da PNAS , Clements e equipe comparam as mitocôndrias e suas aparentadas bacterianas, demonstrando que os componentes necessárias para um maquinário celular particular já estavam presentes antes de qualquer mitocôndria vir a existir. Pelas evidências apresentadas pelos autores, foi apenas uma questão de tempo até que tais componentes se combinassem de modo mais complexo.

Clements, A., Bursac, D., Gatsos, X., Perry, A., Civciristov, S., Celik, N., Likic, V., Poggio, S., Jacobs-Wagner, C., Strugnell, R., & Lithgow, T. (2009). The reducible complexity of a mitochondrial molecular machine Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0908264106


Nota: As mitocôndrias são organelas celulares descendentes de bactérias que milhões de anos atrás foram "incorporadas" por células mais complexas. Isso foi proposto por Lynn Margulis, criadora da Teoria da Endossimbiose. Em pouco tempo essas bactérias incorporadas se tornaram estruturas realizadoras de processos fundamentais para as funções celulares.

Porém existe um entrave nesta hipótese de pré-mitocôndrias. Elas não poderiam ter sobrevivido em seu novo "lar" sem um maquinário protéico chamado TIM23 (um complexo enzimático da membrana interna da mitocôndria que pode ser visualizado em amarelo, na imagem abaixo) [Nota 1] que realiza o transporte de proteínas para dentro das mitocôndrias. As bactérias ancestrais não possuem o complexo TIM23, o que sugere que tenham sido desenvolvidas já nas mitocôndrias, posteriormente.



Nota 1: Recomendamos


Isso nos conduz a um dilema do tipo "Quem veio primeiro, o ovo ou a galinha?": como poderia o transporte de proteínas ter evoluído quando as proteínas eram necessárias para a sobrevivência, no primeiro caso?!


De acordo com a teoria evolucionista, no entanto, a complexidade celular É redutível. É necessário somente que os componentes existentes sejam recondicionados, com mutações inevitáveis promovendo ingredientes extras à medida em que são necessários. Os flagelos, propulsores similares a cabelos usados por bactérias para locomoção, são outro exemplo. Seus componentes são encontrados por toda a célula realizando outras tarefas.

O design inteligente já utilizou os flagelos como "evidência" de sua teoria, assumindo que o mesmo seria uma estrutura irredutível, o que foi posto por terra de acordo com fatos científicos, como pode ser lido nesse artigo da revista New Scientist.[Nota 2] Esse estudo utilizando mitocôndrias faz o mesmo em relação ao transporte de proteínas.

"Essa análise de transporte de proteínas nos fornece uma marca para a evolução de maquinários celulares em geral," escreve a equipe liderada por Trevor Lithgow. "A complexidade dessas máquinas não é irredutível."


Nota 2: Recomendamos:


Quando analisaram os genomas de proteobactérias, a família que deu origem aos ancestrais das mitocôndrias, a equipe de Lithgow encontrou duas das partes protéicas utilizadas pelas mitocôndrias para fazer o complexo TIM23.

As partes estão na membrana celular bacteriana, localizadas de modo ideal para o eventual papel de transporte protéico feito pelo complexo TIM23. Apenas outra parte, uma molécula chamada LivH [Nota 3], poderia fazer um maquinário de transporte protéico rudimentar - e (surpresa!) essa molécula é comumente encontrada em proteobactérias.

Nota 3: Recomendamos:



O processo pelo qual partes são acumuladas até que estejam preparas para se juntarem num complexo é chamado pré-adaptação. É uma forma de "evolução neutra", na qual a construção das partes não fornece nenhuma vantagem ou desvantagem imediata. A evolução neutra encontra-se fora das descrições de Darwin. Mas quando as partes são juntas, mutações e a seleção natural podem se encarregar do restante do processo, resultando, em último caso, no agora complexo TIM23.

"Não era possível, até hoje, traçar qualquer uma dessas proteínas até seu ancestral bacteriano," diz o biologista celular Michael Gray, um dos pesquisadores que originalmente descreveu as origens das mitocôndrias. "Essas três proteínas não possuíam exatamente a mesma função nas proteobactérias, mas com uma simples mutação puderam se transformar numa máquina de transporte de proteínas simples, que pode dar início a tudo."


"Você olha para maquinários celulares e diz, porque a Biologia faria algo assim?! É muito bizarro," ele diz. "Mas quando você pensa sobre o assunto à luz dos processos de evolução neutra, em que essas máquinas emergem antes que sejam necessárias, elas fazem sentido."

Colocado no blog ótimo dos Biólogos:






A diferença entre um idiota e um gênio é que há um limite à genialidade. - Einstein







Anexos




D.I. - Literatura de refutação

Colaboração de meu amigo Fábio. Algumas refutações já publicadas:



O crente insiste 2

Aqui, a inesquecível capa do primeiro álbum dos Beastie Boys é utilíssima como imagem representativa do desastre que é a "falácia do Boeing de Hoyle". 

Seguidamente, criacionistas e outros não entendem que a Falácia de Hoyle tem certas implicações lógicas.

"Falar que HOYLE DEFENDIA o DI é o CUMULO."

1) Se a falácia de Hoyle implica em que aminoácidos não podem pelos processos naturais formar moléculas complexas, como poderiam então se formar se não fosse por uma ação externa?

2) Se é ação externa, e gera a organização que Hoyle exige, como não poderia ser inteligente?

3) Se é inteligente, como não poderia por "crescendo infinito" chegar a uma divindade? [Nota 4]






Toda ironia advém da desgraça alheia. - Mark Twain, que eu parafraseio dizendo que muita arte irônica advém da estupidez alheia.


segunda-feira, 16 de abril de 2012

Matematiquices 1



Se você entende uma idéia, consegue expressá-la de modo que os outros possam entendê-la. 
- Warren Buffett
_
1


De uma prova da Petrobrás:

Dado que a área do triângulo abaixo é SQR (3) (raiz quadrada de 3), calcule o raio do círculo, considerando o hexagrama como regular e formado por triângulos equiláteros.



AT= SQR (3) .'. AT=(L/2)*h

h=cos (alfa) * L = L*SQR (3)/2


Obs.: Aqui, poderíamos fazer facilmente, sem saber o ângulo e o valor do seu cosseno, pelo Teorema de Pitágoras.

[(L/2)^2]+(h^2)=(L^2) .'. (h^2)=(L^2)-[(L/2)^2] .'. (h^2)=(L^2)-[(L^2)/4] .'.
(h^2)={[4*(L^2)]/4}-[(L^2)/4]=3*(L^2)/4 .'. h = SQR (3/4) * h = [SQR (3)/2]*L



AT=(L/2)*L*[SQR (3)/2]=[SQR (3)/4]*(L^2)

SQR (3) =  [SQR (3)/4]*(L^2) .'. [SQR (3)/SQR (3)]*4=L^2 .'. L^2=4 .'. L=2

R= 2*h = 2*L*SQR (3)/2 = L* SQR (3) = 2*SQR (3)


Nada nos engana tanto como a nossa própria opinião. - Leonardo da Vinci


2



De uma prova do BNDES:

Em uma urna, há um grande número de fichas de 4 tipos:

  • quadradas brancas
  • quadradas vermelhas
  • redondas brancas
  • redondas vermelhas



Sabe-se que:

  • 70% de todas as fichas são brancas.
  • 25% das fichas quadradas são vermelhas.
  • 60% das fichas vermelhas são redondas.

Qual a porcentagem de fichas redondas e brancas nessa urna?


Resolução:

Primeiro raciocínio: Se 70% de todas as fichas são brancas, 30% são vermelhas.

Se 60% das fichas vermelhas são redondas, e 30% das fichas são vermelhas, 60% de 30% das fichas são redondas, logo, 18% (0,6*0,3=0,18=18%) das fichas.

Se 70% das fichas são brancas e 18% das fichas são vermelhas redondas, só podem restar 12% de fichas que sejam quadradas vermelhas.

Se 25% das fichas quadradas são vermelhas e estas correspondem a 12% do total, 75% das fichas quadradas vermelhas restam entre as quadradas, que sendo igual a 12% do total, resultam em 36% (regra de três: se 25% está para 12%, 75% está para 36%) de fichas quadradas brancas do total.

Se 36% das fichas quadradas brancas existem, restam para completar 70% de fichas brancas 34% de fichas redondas brancas.


Deseja um ano de prosperidade? Cultive grãos. 10 anos? Cultive árvores. 100 anos? Cultive gente. 
- Provérbio chinês



Anexos

Sugestão de um livro daqueles de constar entre outros do tipo "obras completas de artista fulano" e "mesas em marcenaria francesa do século XVII", em sua mesa de centro:






O Livro da Matemática, de Clifford A. Pickover


A paciência é a força do fraco e a impaciência, a debilidade do forte. - Kant


_

segunda-feira, 9 de abril de 2012

Degelo



Uma revisão de um antigo rascunho onde mostro que existe um bocado de histeria por parte da citação de alguns números quanto à elevação dos mares e oceanos com o derretimento das calotas polares e gelos do planeta. As poucas referências citadas são mais com o objetivo de mostrar que tais números moderados são bem divulgados na mídia, uma referência acadêmica pois se faz sempre necessário, e o restante, como gosto de dizer, "matemática de calculadora de camelô, caneta BIC e papel de pão".






Consideraremos as grandes áreas terrestres cobertas de gelo:

Antártida = 14 milhões de km²

Groenlândia = 2,166 milhões de km²

Sibéria = 10,007 milhões de km²

Canadá = 9,984 milhões de km²

Destas áreas, devemos destacr ques as massas de gelo que se formam nos oceanos e mares circundantes e internos não se somariam o volume dos oceanos, pois seus congelamento se dá no volume oceânico e da massa d'água em questão e não num volume que venha a acrescentar significativamente a ele (não há soma significativa de altura sobre o nível do mar).

A Antártida e a Groenlândia apresentam cobertura de gelo que podemos lançar como sendo de 2 km de espessura, este sim a se acrescentar, quando degelado, aos volumes oceânicos.

A Sibéria e o Canadá não são totalmente cobertos de glo, mas o possuiriam em camada acumulada ou permeada no solo (permafrost) em valor que levaremos a ser de metade de seu território e em espessura de 2 metros.

Este exagero já cobriria as neves em degelo de toda as montanhas do mundo, não contidas nestas áreas, acreditamos.

Assim, ficaríamos com os seguintes volumes:

Antártida = 14 milhões de km² x 2 km = 28 milhões de km³*

* Valor que já concordaria com certos somatórios de alguns autores.[Agência Brasil]

Groenlândia = 2,166 milhões de km² x 2 km = 4,332 milhões de km³

Sibéria = 10,007 milhões de km² x 50% x 2 m = 0,01 milhão de km³

Canadá = 9,984 milhões de km² x 50% x 2 m = 9,984 x 10^-3 milhão de km³


Totalizando aproximadamente 32,35 milhões de km³ de gelo tornando-se água a acrescentar-se aos oceanos. Desprezemos aqui a redução  de volume do descongelamento da água, que tornaria, na verdade, este volume de gelo um volume de água líquida um tanto menor, além do degelo do gelo na água submerso, abaixo da linha da superfície, que cederia volume para mais água, reduzindo o volume total das massas de água em questão.

Sabendo-se que o raio médio da Terra é de proximadamente 6378 km, e que a área da esfera é

A=4.pi.r²

Temos que a Terra possui uma área de 511,19 milhões de km².

A área dos oceanos é de aproximadamente 71% deste valor, o que nos leva a uma área de oceanos de aproximadamente 362,94 milhões de km².

Desconsideraremos que um volume de água a ser acrescentado sobre esta área formará uma "casca esférica", uma camada, que teria, digamos, uma diferença entre a área mais ao fundo e a superficial, e consideraremos que seria uma camada plana, de idênticas áreas "em cima" e "em baixo". Adiante mostraremos, de maneira simples, que esta simplificação é mais que aceitável.

Sendo o volume de degelo de 32,35 milhões de km³, o dividiremos pela área desta superfície planificada (de volume do cilindro ou prisma = área da base x altura), e encontraremos a altura da camada a se acrescentar de água.

h=32,35 milh.km³/362,94 milh.km²=0,089 km = 89 m

Algumas observações sobre o aparentemente assustador número acima.

1) Não esqueçamos que coloquei diversas variáveis de forma exagerada.
2) Percebamos que qualquer metro a mais num volume, uma "camada de líquido", para cobrir uma área de terra, terá de se deslocar desta altura sobre o mar para a terra que cobrirá. Ou seja: para cobrir mais área, a massa de água tem de obviamente ter menos altura, menos profundidade da lâmina de água.
3) Uma maior coluna de água aumentará a pressão sobre as porosidades do fundo das massas de água, aumentando a penetração nestas, e consequentemente, diminuindo a lâmina de água desde o fundo. O mesmo se verificaria em áreas costeiras, onde a hoje seca areia, por exemplo, passaria a ser molhado leito de inédita lâmina de água.
4) A água alcança sua maior densidade a 4°C, o que aqui não levamos em consideração, apenas lembrando que há uma maior significância na diminuição do volume entre gelo e degelo.[hsw]
5) Aqui eu desprezei as massas de gelo das montanhas que existem até em regiões tropicais, pois considero que o maior problema disto seja o abastecimento de água doce em áreas onde a única fonte de água é o degelo, que tem para se manter constante, necessita da óbvia formação de novas massas de gelo. Alguns autores consideram este degelo significativo na elevação dos oceanos.[Agência Brasil]
A montanha Rincón em 2000 e 2004. [Kausch]


Mas a mais importante questão do ponto de vista geológico é que ao saírem estas massas de gelo de sobre a Groenlândia e a Antártida, predominantemente, o reido da astenosfera movimentar-se-á, elevando aquelas massas de terra, e a massa a maior de água nos oceanos fará o inverso com o solo sub-oceânico*, no conjunto, tais movimentos modificando o geoide terrestre (perdão pelo pleonasmo), o qual mantém volume aproximadamente constante, de onde a elevação dos mares jamais chegará estes valores.

* Danem-se regras ortográficas que geram palavras no escrito até de difícil entendimento e péssima sonoridade!

Daí os cálculos mais exatos e completos considerarem que a elevação ficaria pelos 60 cm até o ano de 2100.[Aprile][Santoro][Sampaio][hsw]

Evidentemente, os efeitos de marés teriam de ser considerados, o que poderia fazer onde hoje temos marés de frações de metro chegarem a calculados 6 metros, disto advindo o valor de uma elevação de 6 metros para os oceanos, pois em termos de ocupação humana, o que interessa não é o valor médio do nível do mar, mas o máximo das marés.

Efeitos das tempestades, e verdadeiras "paredes" de água oriundas de furacões, como as que se evidenciaram no Catrina, eu desconsideraria nas questões específicas aqui tratadas, pois sua ocorrência é eventual, e não cíclica como as marés. Os próprios tsunamis, ocorrentes também nas eras glaciais e seus baixíssimos níveis oceânicos, também entram neste quadro de enventualidade independente do degelo (embora não, no caso dos furacões e tempestades, de um aquecimento global).[hsw]

Disto advém que as imagens, como a de Veneza, no topo desta blogagem, são mais devidas às marés, e dinâmicas de praias (pois praias, por definição, são sistemas bastante dinâmicos), fora a compactação de solos (seu "afundamento") e geologismos similares e não propriamente pela elevação do nível médio da água.

ecodebate.com.br


Voltando ao caso da simplificação de superfície/camada de água, coloquemos.

r1=6378 ; r2=6378,089, que faremos r2=6378,1 para simplificar e "forçar" nossos cálculos.

Lembrando que a área dos oceanos é 0,71% da área terrestre, temos:

A1=4.pi.r1²=4.pi.(6378)²=511,19 milh.km² e área dos oceanos deste raio, Aoc1=0,71.A1

Aoc1=362,94 milh.km²

A2=4.pi.r2²=4.pi.(6378,1)²=511,2 milh.km² e área dos oceanos deste raio, Aoc2=0,71.A2

Aoc2=362,95 milh.km²

O que dá uma diferença de 2,76 milésimos de % no valor das duas áreas.



Gradativamente, vamos ver eventos abruptos de clima, como enxurradas, enchentes e geadas em lugares que nunca haviam ocorrido antes, e também o aumento do nível do mar. Mas é gradativo, não é para amanhã. - Jefferson Cardia Simões, coordenador-geral do Instituto Nacional de Ciência e Tecnologia da Criosfera [Agência Brasil]



Referências

Extras

I

Sobre estudo publicado na Nature:


Destaco: 

O saldo final do derretimento na Groenlândia, na Antártica, nas geleiras e nos picos gelados do mundo foi de 4,3 trilhões de toneladas de gelo. Isso acrescentou 12 milímetros ao nível do mar no mundo. 



II

Para variar, a Wikipédia em inglês apresenta artigo de qualidade sobre o tema, com gráficos que apontam a questão de que hoje estamos diante de um período de baixíssimo nível dos oceanos, que foi o da última glaciação.


Current sea level rise - Wikipedia




_