domingo, 30 de agosto de 2015

História da geometria - complementos


Traduções adicionais em: en.wikipedia.org - History of geometry

Adicional


Geometria islâmica



A destruição final da Biblioteca de Alexandria na conquista muçulmana do Egito, em 642 d.C. marca o colapso da antiguidade clássica no Ocidente, e no início da "Idade das Trevas" europeia. Até o início do século IX, a "Idade de Ouro islâmica" floresceu, a criação da Casa da Sabedoria, em Bagdá marcando uma tradição separada da ciência no mundo islâmico medieval, a construção não somente com bases helênicas, mas também sobre fontes indianas.


Acréscimos na Wikipédia

Renascença

Uma gravura de Albrecht Dürer caracteriza Mashallah, a partir da página de título do De scientia motus orbis (versão latina com gravura, 1504). Como em muitas ilustrações medievais, o compasso aqui é um ícone da religião, bem como ciência, em referência a Deus como o arquiteto da criação.


A transmissão dos clássicos gregos para a Europa medieval através da literatura árabe do século IX e X da "Idade de Ouro Islâmica" começou no século X e culminou nas traduções latinas do século XII. Uma cópia do Almagesto de Ptolomeu foi trazido de volta para a Sicília por Enrico Aristipo (d. 1162), como um presente do imperador ao rei William I (r. 1154-1166). Um estudante anônimo em Salerno viajou para a Sicília e traduziu o Almagesto, bem como várias obras de Euclides do grego para o latim.[35] Em geral, embora os sicilianos diretamente traduziram a partir dos textos gregos, quando textos gregos não estavam disponíveis, eles traduzirim do árabe. Eugênio de Palermo (d. 1202) traduziu Ótica de Ptolomeu para o latim, com base em seu conhecimento de todas as três línguas na tarefa.[36] Os métodos dedutivos rigorosos de geometria encontrada nos Elementos de Euclides da geometria foram reaprendidos, e um maior desenvolvimento da geometria em ambos os estilos, de Euclides (geometria euclidiana) e Khayyam (geometria algébrica) continuou, resultando em uma abundância de novos teoremas e conceitos, muitos deles muito profundas e elegantes.

Avanços no tratamento da perspectiva foram feitos na arte renascentista do século XIV ao XV indo além do que que tinha sido alcançado na antiguidade. Na arquitetura na renascença do Quattrocento, conceitos de ordem arquitetônica foram formuladas e regras foram exploradas. Um bom exemplo é a Basílica de San Lorenzo, em Florença, por Filippo Brunelleschi (1377-1446).[37]    

Em torno de 1413 Filippo Brunelleschi demonstrou o método geométrico de perspectiva, usado hoje por artistas, pintando os contornos de vários edifícios florentinos em um espelho. Logo depois, quase todos os artistas em Florença na Itália e usaram a perspectiva geométrica em suas pinturas,[38] nomeadamente Masolino da Panicale e Donatello. Melozzo da Forlì primeiro utilizou a técnica de encurtamento siperior (em Roma, Loreto, Forlì e outros), e foi celebrado por isso. Não foi a somente perspectiva um modo de mostrar profundidade, mas foi também um novo método de compor uma pintura. Pinturas começaram a mostrar uma única cena unificada, em vez de uma combinação de várias.

Como mostrado pela proliferação rápida de pinturas em perspectiva precisa em Florença, Brunelleschi possivelmente entendeu (com a ajuda de seu amigo, o matemático Toscanelli), [39] mas não publicou, a matemática por trás da perspectiva. Décadas mais tarde, seu amigo Leon Battista Alberti escreveu De pictura (1435/1436), um tratado sobre métodos adequados de indicar a distância na pintura baseada na geometria euclidiana. Alberti também foi treinado na ciência da óptica através da escola de Pádua e sob a influência de Biagio Pelacani de Parma que estudou a Óptica de Alhazen.

Piero della Francesca elaborou sobre Della Pittura em seu De Prospectiva Pingendi na década de 1470. Alberti tinha se limitado a dados sobre o plano de apoio e dando uma base global para a perspectiva. Della Francesca desenvolve-a para fora, cobrindo explicitamente sólidos em qualquer área do plano do quadro. Della Francesca também começou a prática agora comum de usar figuras ilustradas para explicar os conceitos matemáticos, tornando seu tratado mais fácil de entender do que Alberti. Della Francesca também foi o primeiro a desenhar com precisão os sólidos platônicos como apareceriam em perspectiva.

A perspectiva permaneceu, durante algum tempo, sob o domínio de Florença. Jan van Eyck, entre outros, foi incapaz de criar uma estrutura consistente para as linhas convergentes em pinturas, como em o retrato O Casal Arnolfini de Londres, porque ele não tinha conhecimento do avanço teórico então ocorrendo apenas na Itália. No entanto, ele alcançou efeitos muito sutis por manipulações de escala em seus interiores. Gradualmente, e em parte através do movimento de academias de artes, as técnicas italianas passaram a fazer parte da formação dos artistas de toda a Europa e outras partes posteriores do mundo. O ponto culminante dessas tradições renascentistas encontra sua síntese final na pesquisa do arquiteto, geômetra, e óptico Girard Desargues, em perspectiva, óptica e geometria projetiva.

Casal Arnolfini - whisnerfraga.wordpress.com


O Homem Vitruviano de Leonardo da Vinci (c. 1490) [40] descreve um homem em duas posições sobrepostas com seus braços e pés distantes e inscritos em um círculo e um quadrado. O desenho é baseado nas correlações de proporções humanas ideais com a geometria descrita pelo antigo arquiteto romano Vitrúvio no Livro III de seu tratado De Architectura.



Homem Vitruviano - artenarede.com.br

Notas e referências

35.d'Alverny, Marie-Thérèse. "Translations and Translators", in Robert L. Benson and Giles Constable, eds.,Renaissance and Renewal in the Twelfth Century, 421–462. Cambridge: Harvard Univ. Pr., 1982, pp. 433–4.
36.M.-T. d'Alverny, "Translations and Translators," p. 435
37.Howard Saalman. Filippo Brunelleschi: The Buildings. (London: Zwemmer, 1993).
38.Citação: "...and these works (of perspective by Brunelleschi) were the means of arousing the minds of the other craftsmen, who afterwords devoted themselves to this with great zeal." - Tradução: “... e esses trablhos (de perspectiva por Brunelleschi) eram o meio de despertar as mentes dos outros artesãos, que em posfácios dedicaram-se a esta com muito zelo.” - Vasari's Lives of the Artists Chapter on Brunelleschi
39.Citação: "Messer Paolo dal Pozzo Toscanelli, having returned from his studies, invited Filippo with other friends to supper in a garden, and the discourse falling on mathematical subjects, Filippo formed a friendship with him and learned geometry from him." - Tradução: “Messer Paolo dal Pozzo Toscanelli, tendo retornado de seus estudos, convidou Filippo com outros amigos para jantar em um jardim, e o discurso caindo em assuntos matemáticos, Filippo formou uma amizade com ele e aprendi geometria dele.“- Vasarai's Lives of the Artists, Chapter on Brunelleschi
40.The Secret Language of the Renaissance - Richard Stemp


Leituras recomendadas

CATHERINE BELTRÃO; O HOMEM VITRUVIANO E O NÚMERO PHI: A MATEMÁTICA DA BELEZA, AGOSTO 17, 2014 - artenarede.com.br



sábado, 22 de agosto de 2015

História da teoria das probabilidades




Probabilidade tem um aspecto duplo: por um lado a probabilidade ou possibilidade de uma hipótese dada a evidência para ela, e, por outro lado, o comportamento de processos estocásticos, tais como o lançamento de dados ou moedas. O estudo da primeira é historicamente mais antigo, por exemplo, uma lei de evidência, enquanto o tratamento matemático dos dados começou com o trabalho de Cardano, Pascal e Fermat entre os século XVI e XVII.


Girolamo Cardano: Hieronymi Cardani artis magnae sive de regulis 
algebraicis liber unus. Nürnberg, 1545. - www.library.ethz.ch

Probabilidade se distingue de estatística. (Veja a história da estatística). Enquanto a estatística lida com dados e inferências a partir deles, probabilidade (estocástica) trata dos processos estocásticos (aleatório)que estão por trás de dados ou resultados.

Etimologia


Provável e probabilidade e seus cognatos em outras línguas modernas derivam do latim ensinado medieval probabilis , derivando de Cícero e geralmente aplicado a um parecer ao dizer-se plausível ou geralmente aprovado.[1] O sentido matemático do termo é de 1718. No século XVIII, o termo oportunidade também foi usado no sentido matemático de "probabilidade" (e a teoria da probabilidade foi chamado Doutrina das Chances). Esta palavra é, em última análise originária a partir do termo cadentia do latim, ou seja, "uma queda". O adjetivo Inglês provável é de origem germânica, provavelmente a partir do termo likligr do Old Norse (língua nórdica antiga) , enquanto no Inglês Antigo teve o termo geliclic com o mesmo sentido, significando originalmente "ter a aparência de ser forte ou capaz" ou “tendo a aparência ou qualidades semelhantes”, com um significado de "provavelmente" gravado a partir do final do século XIV. Da mesma forma, o substantivo derivado likelihood  tinha um significado de "similaridade, semelhança", mas assumiu um significado de "probabilidade" em meados do século XV.


Origens


A “lei de evidências“ antiga e medieval desenvolveu uma classificação dos graus de provas, probabilidades, presunções e meia-prova para lidar com as incertezas de evidências (provas) em tribunais.[2] Nos tempos da Renascença, as apostas foram discutidas em termos de probabilidades, como "dez a um" e prêmios de seguro marítimos foram estimados com base nos riscos intuitivos, mas não havia nenhuma teoria sobre a forma de calcular essas probabilidades ou prêmios.[3]     


Os métodos matemáticos de probabilidade surgira na correspondência de Gerolamo Cardano, Pierre de Fermat e Blaise Pascal (1654) sobre questões como a divisão justa da participação em um jogo de azar interrompido. Christiaan Huygens (1657) deu um tratamento abrangente do assunto.[4][5]  


De Games, Gods and Gambling ISBN 978-0-85264-171-2 por F. N. David:


Houve momentos na antiguidade de jogos jogados com o osso astrágalo, ou tálus. A cerâmica grega é uma evidência para mostrar que havia um círculo desenhado no chão e atirava-se o astrágalo para esse círculo, similarmente como se joga bolas de gude. No Egito, escavadores de túmulos descobriram um jogo chamado "cães de caça e os chacais", que se assemelha ao jogo moderno "cobras e escadas". Parece que esta é a fase inicial da criação dos dados de jogo.


Tabuleiro do jogo “cães de caça e os chacais” do túmulo de Reniseneb (MMA 1287/07/26)
Fim da 12° Dinastia - 13° Dinastia 13 (ca. 1810-1700 a.C.), - www.joanannlansberry.com


Primeiro jogo de dados mencionados na literatura da era cristã foi chamado Hazard (“perigo”). Jogado com 2 ou 3 dados. Considera-se que foi trazido para a Europa pelos cavaleiros que regressavam das Cruzadas.


Dante Alighieri (1265-1321) menciona este jogo. A comentário de Dante coloca ainda mais indagações sobre esse jogo: a ideia era que, com 3 dados, o número mais baixo você pode obter é 3, um ás para cada dado. A obtenção de um 4 pode ser feita com três dados por obter-se dois em um dados e ases nos outros dois dados.


Cardano também pensou sobre o lançamento de três dados. 3 dados são lançados: há o mesmo número de maneiras de obter-se um total de 9 como há de 10. Para um 9: (621) (531) (522) (441) (432) (333) e para 10: (631) (622) (541) (532) (442) (433). A partir disso, Cardano descobriu que a probabilidade de obter 9 é menor do que a obter-se um 10 (aqui, interessam também as permutaçoes envolvidas, os arranjos,  a ordem em que os dados mostram seus resultados, e não só as combinações dos resultados possíveis dos dados, de onde, por exemplo, uma possibilidade - permutação - de 621, também implica em 612, 216, 261, 126 e 162). Ele também demonstrou a eficácia da definição de probabilidades como o razão entre favorável a evolução desfavorável (o que implica que a probabilidade de um evento é dada pela proporção de resultados favoráveis para o número total de possíveis resultados [6]).    


Além disso, o famoso Galileo escreveu sobre o jogo de dados em algum momento entre 1613 e 1623. Essencialmente pensado sobre o problema de Cardano, sobre a probabilidade de obter-se um total de 9 é menor do que jogando um 10. Galileu teve o seguinte a dizer: Certos números têm a capacidade de serem jogados porque há mais maneiras de criar esse número. Embora 9 e 10 tenham o mesmo número de maneiras de ser criados, 10 é considerado por jogadores de dados como sendo um resultado mais comum do que 9.


Século dezoito


A obra de Jacob Bernoulli Ars Conjectandi (póstuma, 1713) e The Doctrine of Chances (A Doutrina de Chances 1718) de Abraham de Moivre colocou a probabilidade em um patamar de campo da matemática, mostrando como calcular uma ampla gama de probabilidades complexas. Bernoulli mostrou uma versão da lei fundamental de um grande número, o que indica que, num grande número de ensaios, a média dos resultados é susceptível de ser muito próximo do valor desejado - por exemplo, em 1000 lançamentos de uma moeda, é provável que ocorram cerca de 500 resultados “cara” (e quanto maior o número de lances, o mais perto de “metade” a proporção é provável que situe-se).


Século dezenove


O poder de métodos probabilísticos em lidar com a incerteza foi mostrado pela determinação de Gauss da órbita de Ceres com poucas observações. A teoria dos erros utilizou o método dos mínimos quadrados para corrigir observações propensas a erro, especialmente em astronomia, com base na hipótese de uma distribuição normal dos erros para determinar o verdadeiro valor mais provável. Em 1812, Laplace publicou seu Théorie analytique des probabilités em que consolidou e estabeleu muitos resultados fundamentais na probabilidade e estatística, tais como a função geradora de momentos, o método dos mínimos quadrados, a probabilidade indutiva e testes de hipóteses.


Perto do final do século XIX, um grande sucesso de explicação em termos de probabilidades era a mecânica estatística de Boltzmann e Ludwig J. Willard Gibbs que explicaram propriedades dos gases, tais como a temperatura em termos dos movimentos aleatórios de um grande número de partículas.


O campo da história da própria probabilidade foi estabelecido pela monumental obra de Isaac Todhunter, History of the Mathematical Theory of Probability from the Time of Pascal to that of Lagrange (Teoria Matemática da Probabilidade do Tempo de Pascal ao de Lagrange, 1865).

Século vinte


Probabilidade e estatística tornaram-se intimamente ligadas através do trabalho em testes de hipóteses de R.A. Fisher e Jerzy Neyman, que agora é amplamente aplicado em experimentos biológicos e psicológicos e em ensaios clínicos de drogas, bem como em economia e em outras atividades. Uma hipótese, por exemplo, que uma droga é geralmente eficaz, dá origem a uma distribuição de probabilidades que será observada se a hipótese for verdadeira. Se as observações aproximadamente concordarem com a hipótese, confirma-se, se não, a hipótese é rejeitada.[7]    


A teoria de processos estocásticos ampliou-se em áreas como processos de Markov e movimento browniano, o movimento aleatório de partículas minúsculas suspensas em um líquido. Isso forneceu um modelo para o estudo de flutuações aleatórias nos mercados de ações, levando ao uso de modelos de probabilidade sofisticados em matemática financeira, incluindo sucessos como a amplamente usada fórmula Black–Scholes para a avaliação de opções.[8]    


O século XX também viu longas disputas sobre as interpretações de probabilidade. O chamado frequentismo de meados do século era dominante, sustentando que a probabilidade significa freqüência relativa de longo prazo em um grande número de ocorrências. No final do século houve um renascimento da visão Bayesiana, de acordo com a qual a noção fundamental da probabilidade é como uma proposição é suportada pela evidência para ela.


O tratamento matemático de probabilidades, especialmente quando há infinitamente muitos resultados possíveis, foi facilitado pelo axiomas de Kolmogorov (1933).

Notas e referências


1. J. Franklin, The Science of Conjecture: Evidence and Probability Before Pascal, 113, 126.
2. Franklin, The Science of Conjecture, ch. 2.
3. Franklin, Science of Conjecture, ch. 11.
4. Ian Hacking, The Emergence of Probability
5. Franklin, Science of Conjecture, ch. 12.
7. Salsburg, The Lady Tasting Tea.
8. Bernstein, Against the Gods, ch. 18.

  • Bernstein, Peter L. (1996). Against the Gods: The Remarkable Story of Risk. New York: Wiley. ISBN 0-471-12104-5.
  • Daston, Lorraine (1988). Classical Probability in the Enlightenment. Princeton: Princeton University Press. ISBN 0-691-08497-1.
  • Franklin, James (2001). The Science of Conjecture: Evidence and Probability Before Pascal. Baltimore, MD: Johns Hopkins University Press. ISBN 0-8018-6569-7.
  • Hacking, Ian (2006). The Emergence of Probability (2nd ed). New York: Cambridge University Press. ISBN 978-0-521-86655-2. Ou Cambridge University Press, 2006. - books.google.com.br
  • Hald, Anders (2003). A History of Probability and Statistics and Their Applications before 1750. Hoboken, NJ: Wiley. ISBN 0-471-47129-1.
  • Hald, Anders (1998). A History of Mathematical Statistics from 1750 to 1930. New York: Wiley. ISBN 0-471-17912-4.
  • Heyde, C. C.; Seneta, E. (eds) (2001). Statisticians of the Centuries. New York: Springer. ISBN 0-387-95329-9.
  • von Plato, Jan (1994). Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective. New York: Cambridge University Press. ISBN 978-0-521-59735-7.
  • Salsburg, David (2001). The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. ISBN 0-7167-4106-7
  • Stigler, Stephen M. (1990). The History of Statistics: The Measurement of Uncertainty before 1900. Belknap Press/Harvard University Press. ISBN 0-674-40341-X.

Ligações externas